Some extensions of the class of k-convex bodies

نویسنده

  • V. Golubyatnikov
چکیده

We study relations of some classes of k-convex, k-visible bodies in Euclidean spaces. We introduce and study circular projections in normed linear spaces and classes of bodies related with families of such maps, in particular, k-circular convex and k-circular visible ones. Investigation of these bodies more general than k-convex and k-visible ones allows us to generalize some classical results of geometric tomography and find their new applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

A New Affine Invariant for Polytopes and Schneider’s Projection Problem

New affine invariant functionals for convex polytopes are introduced. Some sharp affine isoperimetric inequalities are established for the new functionals. These new inequalities lead to fairly strong volume estimates for projection bodies. Two of the new affine isoperimetric inequalities are extensions of Ball’s reverse isoperimetric inequalities. If K is a convex body (i.e., a compact, convex...

متن کامل

Fixed points for total asymptotically nonexpansive mappings in a new version of bead ‎space‎

The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...

متن کامل

The illumination body of almost polygonal bodies

The affine surface area was introduced by Blaschke [B] for convex bodies in R with sufficently smooth boundary and by Leichtweiss [L1] for convex bodies in R with sufficently smooth boundary. As it occurs naturally in many important questions so for example in the approximation of convex bodies by polytopes ( see the survey article of Gruber [G] ) or in a priori estimates for PDEs [Lu2] one wan...

متن کامل

Some new extensions of Hardy`s inequality

In this study, by a non-negative homogeneous kernel k we prove some extensions of Hardy's inequalityin two and three dimensions

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008