Some extensions of the class of k-convex bodies
نویسنده
چکیده
We study relations of some classes of k-convex, k-visible bodies in Euclidean spaces. We introduce and study circular projections in normed linear spaces and classes of bodies related with families of such maps, in particular, k-circular convex and k-circular visible ones. Investigation of these bodies more general than k-convex and k-visible ones allows us to generalize some classical results of geometric tomography and find their new applications.
منابع مشابه
Universal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کاملA New Affine Invariant for Polytopes and Schneider’s Projection Problem
New affine invariant functionals for convex polytopes are introduced. Some sharp affine isoperimetric inequalities are established for the new functionals. These new inequalities lead to fairly strong volume estimates for projection bodies. Two of the new affine isoperimetric inequalities are extensions of Ball’s reverse isoperimetric inequalities. If K is a convex body (i.e., a compact, convex...
متن کاملFixed points for total asymptotically nonexpansive mappings in a new version of bead space
The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...
متن کاملThe illumination body of almost polygonal bodies
The affine surface area was introduced by Blaschke [B] for convex bodies in R with sufficently smooth boundary and by Leichtweiss [L1] for convex bodies in R with sufficently smooth boundary. As it occurs naturally in many important questions so for example in the approximation of convex bodies by polytopes ( see the survey article of Gruber [G] ) or in a priori estimates for PDEs [Lu2] one wan...
متن کاملSome new extensions of Hardy`s inequality
In this study, by a non-negative homogeneous kernel k we prove some extensions of Hardy's inequalityin two and three dimensions
متن کامل